Cette introduction à la mécanique quantique est destinée aux élèves de première année du cycle ingénieur de l'Ecole polytechnique ayant suivi avant leur intégration une formation en physique moins approfondie que celle des filières MPSI, PSI ou PC. Elle n'est donc pas ouverte aux élèves de ces dernières filières, aux élèves déjà titulaires d'une licence de physique ou aux élèves internationaux suivant la formation préparatoire en physique pendant l'année de formation humaine. L'objectif est ici de démarrer progressivement l'enseignement de mécanique quantique de tronc commun (PHY_3X061_EP).

Pour vous connecter, veuillez utiliser votre identifiant habituel prenom.nom. Si vous avez oublié votre mot de passe, veuillez contacter support@polytechnique.fr.

These physics methodology tutorials aim to introduce/review the essential mathematical tools needed to solve quantum mechanics problems. Starting with the principles of solving physical problems in classical mechanics using appropriate models (solving coupled differential equations using matrix techniques), we will address the mathematical solutions for solving the Schrodinger equation in specific cases using bound states of quantum wells as an example.

Quantum physics is probably one of the most "fertile" intellectual adventures of humanity. It has made it possible to determine the structure of nuclei, atoms, and molecules, to elucidate the nature of light, and it constitutes an essential tool for understanding modern physics, from elementary particles to stars and the Big Bang. Its economic impact is just as important: most high-tech products (electronics, lasers and optronics, nanotechnologies, telecommunications) are directly derived from quantum concepts.

The aim of the PHY_3X061_EP course (formerly PHY361) is to introduce all students to quantum physics and some of its applications. The course will follow this outline:

  • Wave-particle duality
  • Polarization state of a single photon
  • Fundamental principles of quantum physics
  • Wave function of a particle
  • Fourier transform in quantum physics
  • One-dimensional systems
  • Tensor product and entanglement
  • From the Stern-Gerlach experiment to spin 1/2
  • Nuclear magnetic resonance

Course language: French

ECTS credits: 5